MIF Family Members Cooperatively Inhibit p53 Expression and Activity
نویسندگان
چکیده
The tumor suppressor p53 is induced by genotoxic stress in both normal and transformed cells and serves to transcriptionally coordinate cell cycle checkpoint control and programmed cell death responses. Macrophage migration inhibitory factor (MIF) is an autocrine and paracrine acting cytokine/growth factor that promotes lung adenocarcinoma cell motility, anchorage-independence and neo-angiogenic potential. Several recent studies indicate that the only known homolog of MIF, D-dopachrome tautomerase (D-DT - also referred to as MIF-2), has functionally redundant activities with MIF and cooperatively promotes MIF-dependent pro-tumorigenic phenotypes. We now report that MIF and D-DT synergistically inhibit steady state p53 phosphorylation, stabilization and transcriptional activity in human lung adenocarcinoma cell lines. The combined loss of MIF and D-DT by siRNA leads to dramatically reduced cell cycle progression, anchorage independence, focus formation and increased programmed cell death when compared to individual loss of MIF or D-DT. Importantly, p53 mutant and p53 null lung adenocarcinoma cell lines were only nominally rescued from the cell growth effects of MIF/D-DT combined deficiency suggesting only a minor role for p53 in these transformed cell growth phenotypes. Finally, increased p53 activation was found to be independent of aberrantly activated AMP-activated protein kinase (AMPK) that occurs in response to MIF/D-DT-deficiency but is dependent on reactive oxygen species (ROS) that mediate aberrant AMPK activation in these cells. Combined, these findings suggest that both p53 wildtype and mutant human lung adenocarcinoma tumors rely on MIF family members for maximal cell growth and survival.
منابع مشابه
D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth.
Previous studies have established the important role of MIF in the development of pancreatic ductal adenocarcinoma (PDAC) for both therapeutic and diagnostic perspectives, but little is known about the expression and function of D-dopachrome tautomerase (DDT), a functional homolog of MIF, in PDAC. In the present study, we demonstrated that DDT was over-expressed in PDAC tissues in a pattern cor...
متن کاملP-201: The Role of P53 Family Members in Infertility
Background: P53, p63, and p73 transcription factors which are belong to The p53 family, are conserved during evolution. They have important roles in many molecular and cellular functions, including tumor suppression, the development of epithelial cell layers, and the development of central nervous system and immune system. Studies show these molecules also have role in maintaining the genomic i...
متن کاملImpaired DNA damage checkpoint response in MIF-deficient mice.
Recent studies demonstrated that proinflammatory migration inhibitory factor(MIF) blocks p53-dependent apoptosis and interferes with the tumor suppressor activity of p53. To explore the mechanism underlying this MIF-p53 relationship, we studied spontaneous tumorigenesis in genetically matched p53-/- and MIF-/-p53-/- mice. We show that the loss of MIF expression aggravates the tumor-prone phenot...
متن کاملmiR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway
miRNAs participate in the regulation of apoptosis. However, it remains largely unknown as to how miRNAs are integrated into the apoptotic program. Mitochondrial fission is involved in the initiation of apoptosis. It is not yet clear whether miRNAs are able to regulate mitochondrial fission. Here we report that miR-30 family members are able to regulate apoptosis by targeting the mitochondrial f...
متن کاملAntiproliferative Genes Arf Induces p53-dependent and -independent
The tumor suppressor p19 (p14 in humans), encoded by the Ink4a/Arf locus, is mutated, deleted, or silenced in many forms of cancer. p19 induces growth arrest by antagonizing the activity of the p53negative regulator, Mdm2, thereby inducing a p53 transcriptional response. p19 can also inhibit cell cycle progression of mouse embryo fibroblasts lacking Cip1 or lacking both Mdm2 and p53, although i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014